1,978 research outputs found

    When Two Is Better Than One: Elements of Intravital Microscopy

    Get PDF
    What are the technical underpinnings of two-photon microscopy? What are the advantages of using two-photon microscopy versus conventional confocal microscopy

    Coherent motion of stereocilia assures the concerted gating of hair-cell transduction channels

    Full text link
    The hair cell's mechanoreceptive organelle, the hair bundle, is highly sensitive because its transduction channels open over a very narrow range of displacements. The synchronous gating of transduction channels also underlies the active hair-bundle motility that amplifies and tunes responsiveness. The extent to which the gating of independent transduction channels is coordinated depends on how tightly individual stereocilia are constrained to move as a unit. Using dual-beam interferometry in the bullfrog's sacculus, we found that thermal movements of stereocilia located as far apart as a bundle's opposite edges display high coherence and negligible phase lag. Because the mechanical degrees of freedom of stereocilia are strongly constrained, a force applied anywhere in the hair bundle deflects the structure as a unit. This feature assures the concerted gating of transduction channels that maximizes the sensitivity of mechanoelectrical transduction and enhances the hair bundle's capacity to amplify its inputs.Comment: 24 pages, including 6 figures, published in 200

    Single-protein detection in crowded molecular environments in cryo-EM images

    Get PDF
    We present an approach to study macromolecular assemblies by detecting component proteins' characteristic high-resolution projection patterns, calculated from their known 3D structures, in single electron cryo-micrographs. Our method detects single apoferritin molecules in vitreous ice with high specificity and determines their orientation and location precisely. Simulations show that high spatial-frequency information and in the presence of protein background a whitening filter are essential for optimal detection, in particular for images taken far from focus. Experimentally, we could detect small viral RNA polymerase molecules, distributed randomly among binding locations, inside rotavirus particles. Based on the currently attainable image quality, we estimate a threshold for detection that is 150 kDa in ice and 300 kDa in 100 nm thick samples of dense biological material

    Applications of Information Theory to Analysis of Neural Data

    Full text link
    Information theory is a practical and theoretical framework developed for the study of communication over noisy channels. Its probabilistic basis and capacity to relate statistical structure to function make it ideally suited for studying information flow in the nervous system. It has a number of useful properties: it is a general measure sensitive to any relationship, not only linear effects; it has meaningful units which in many cases allow direct comparison between different experiments; and it can be used to study how much information can be gained by observing neural responses in single trials, rather than in averages over multiple trials. A variety of information theoretic quantities are commonly used in neuroscience - (see entry "Definitions of Information-Theoretic Quantities"). In this entry we review some applications of information theory in neuroscience to study encoding of information in both single neurons and neuronal populations.Comment: 8 pages, 2 figure

    Non Local Theories: New Rules for Old Diagrams

    Full text link
    We show that a general variant of the Wick theorems can be used to reduce the time ordered products in the Gell-Mann & Low formula for a certain class on non local quantum field theories, including the case where the interaction Lagrangian is defined in terms of twisted products. The only necessary modification is the replacement of the Stueckelberg-Feynman propagator by the general propagator (the ``contractor'' of Denk and Schweda) D(y-y';tau-tau')= - i (Delta_+(y-y')theta(tau-tau')+Delta_+(y'-y)theta(tau'-tau)), where the violations of locality and causality are represented by the dependence of tau,tau' on other points, besides those involved in the contraction. This leads naturally to a diagrammatic expansion of the Gell-Mann & Low formula, in terms of the same diagrams as in the local case, the only necessary modification concerning the Feynman rules. The ordinary local theory is easily recovered as a special case, and there is a one-to-one correspondence between the local and non local contributions corresponding to the same diagrams, which is preserved while performing the large scale limit of the theory.Comment: LaTeX, 14 pages, 1 figure. Uses hyperref. Symmetry factors added; minor changes in the expositio

    Trends Parasitol

    Get PDF
    In December 2013, chikungunya virus (CHIKV) transmission was reported for the first time in the Americas. Since then it has spread quickly, with more than 1 million suspected and confirmed cases being reported in one year, where previously there were only sporadic travel-related cases. Transmission patterns suggest that the epidemic in the southern hemisphere is only beginning and that chikungunya will not go away anytime soon.CC999999/Intramural CDC HHS/United States2016-02-01T00:00:00Z25649340PMC458306

    ScanImage: Flexible software for operating laser scanning microscopes

    Get PDF
    BACKGROUND: Laser scanning microscopy is a powerful tool for analyzing the structure and function of biological specimens. Although numerous commercial laser scanning microscopes exist, some of the more interesting and challenging applications demand custom design. A major impediment to custom design is the difficulty of building custom data acquisition hardware and writing the complex software required to run the laser scanning microscope. RESULTS: We describe a simple, software-based approach to operating a laser scanning microscope without the need for custom data acquisition hardware. Data acquisition and control of laser scanning are achieved through standard data acquisition boards. The entire burden of signal integration and image processing is placed on the CPU of the computer. We quantitate the effectiveness of our data acquisition and signal conditioning algorithm under a variety of conditions. We implement our approach in an open source software package (ScanImage) and describe its functionality. CONCLUSIONS: We present ScanImage, software to run a flexible laser scanning microscope that allows easy custom design
    corecore